สำหรับการวิเคราะห์ข้อมูลนั้นจะแบ่งออกเป็น 4 ระดับดังนี้
1. Descriptive คือการอธิบายสถานะของข้อมูลโดยการวิเคราะห์ในเชิงสถิติขั้นต้น เพื่อทำความเข้าใจรายละเอียดของข้อมูลนอกจากนี้ยังเป็นส่วนของการตรวจสอบและทำความสะอาดข้อมูลอีกด้วย
2. Diagnostic คือการวิเคราะห์ข้อมูลโดยศึกษาปัจจัยที่เกี่ยวข้องกันมากกว่า 2 ปัจจัย ทำให้เห็นเหตุผลของการเปลี่ยนแปลงของข้อมูลมากขึ้น อาจ Probability หรือ Clustering เข้ามาช่วยวิเคราะห์ได้
3. Predictive คือการนำข้อมูลในอดีตมาทำนายอนาคตโดยใช้ปัจจัยที่เคยเกิดขึ้นในอดีต
4. Prescriptive คือการตั้งสมมติฐาน หากมีการเปลี่ยนแปลงเกิดขึ้นแล้วจะผลเกิดขึ้นอย่างไร ได้ผลลัพธ์อย่างไร
ในการวาง Model Pipeline ขั้นตอน Descriptive จะเกิดก่อนเสมอและมักจะเป็นขั้นตอนที่ใช้เวลานานเพราะต้องทำงานกับ Data Owner และผู้เกี่ยวข้องหลายส่วนแต่เมื่อเข้าใจสถานะของข้อมูลอย่างครบถ้วนแล้วในขั้นตอนการวิเคราะห์เชิงลึกจะสามารถมองเห็น Insight และได้ผลลัพธ์ที่สร้าง Impact ได้อย่างมาก
แต่หากละเลยการวิเคราะห์แบบ Descriptive ไป ผลลัพธ์ที่ได้จากการวิเคราะห์เชิงลึกหรือแม้แต่การสร้าง Model ก็อาจจะไม่ตอบโจทย์ก็เป็นได้
Model Pipeline จำเป็นจะต้องถูกออกแบบโดยผู้เชี่ยวชาญที่มีประสบการณ์เพราะเป็นการเชื่อมโยง Model เรียงร้อยต่อกันเป็นลำดับขั้น มิใช่แค่การสร้าง Model ใด Model เดียว
อ่านรายละเอียดเรื่อง Model Pipeline ได้ที่ >>>
#Coraline ให้คำปรึกษาและพัฒนาโครงการ Big Data, Data Governance, Data Management, Data Analytics และ Data Driven Transformations
We turn your DATA into your KEY of success.
Email: inquiry@coraline.co.th
Tel: 099-425-5398
Comments